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1. INTRODUCTION 

This paper concerns the exploration of the 
relation between the morphology (concentration 
and connectivity), the entropy, and the stability of 
networked structures. In section 2 we will intro-
duce the network morphology concept. In section 
3 we will address two approaches to network 
characterization: Traditional network measures 
and the concept of entropy to characterize relative 
order in a network. In section 4 we will link the 
entropy concept to the network characteristics. It 
will be shown that entropy will grow steeply if a 
certain balance between connectivity and concen-
tration is disturbed. While sections 2 through 4 are 
concerned with a static networked structure, sec-
tion 5 will consider the dynamics of networks. We 
explore the relation between the network charact-
eristics and the ‘spontaneous’ instability of simple 
non-linear dynamic systems. Section 6 concludes 
with implications and directions for further re-
search. 

2. MORPHOLOGY OF ECONOMIC NET-
WORKS 

Every network has a morphology. Morphology 
is defined as the form and structure of a network. 
The morphology of a network can be described by 
two separate elements: connectivity and concen-
tration. 

2.1 Connectivity and concentration 

The connectivity of a network can be defined 
as the relationship between the number of nodes 
and the number of connections between the 
nodes. The higher the number of connections with 
respect to the number of nodes, the higher the 
connectivity. 

Concentration defines the number of connect-
ions between a certain node and the others. The 

higher the number of connections from one node 
to all the others, the higher the con-centration. The 
measurement of concentration has a relationship 
with the kurtosis of the distribution of connections 
among the various nodes. 

We have defined a network as a structure 
consisting of nodes and links. Concentration and 
connectivity provide information over the network, 
they have a certain relationship, as shown in figure 
1. Networks with a high connectivity and a high 
concentration cannot exist. This would imply that 
every node is connected to every other node, but 
still nodes exist that have more connections than 
others. The same reasoning can be done for 
medium concentration / high connectivity and me-
dium connectivity / high concentration networks. 
They also cannot exist. Obviously the border 
areas between high, medium and low are some-
what fuzzy. 
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Fig. 1. Relation between network connectivity and 
concentration 

Let us relate these abstract network measures 
to economic networks, such as business organiz-
ations. The morphology concept can be applied to 
social systems by analyzing the links between 
social entities. Different configurations yield differ-
ent levels of order / disorder. In this way order in 
social systems can be seen as an expression of 
the existence of meaningful and purposeful rela-
tionships between functional elements of such a 
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system. Without such relationships the whole of 
the system can have no meaning or purpose. In 
such case the whole is identical to the sum of 
parts and no synergy or common purpose can 
exist. The principles of order through fluctuations 
were first formulated in thermodynamics. The cen-
tral idea is that self-organizing systems do not 
solely thrive on order, they need a certain amount 
of chaos. If the system fixes itself in a certain 
configuration, it will no longer be adaptive. It fol-
lows that a certain amount of disorder should be 
present for the system to remain adaptive. In other 
words, the system should have a certain level of 
entropy, somewhere between order and chaos. In 
an optimally adaptive system order and variety 
(chaos) are in an optimal balance. Neither can be 
reduced without reducing the system’s adaptabil-
ity. 

It is a popular belief that networked structures 
exists because of the ability or even necessity for 
all agents to relate to all other agents. Yet it can 
be shown that a high connectivity factor of a sys-
tem (the average number of links any agent in the 
network has), combined with a low concentration 
factor (there are no concentration points) leads to 
a very rich ‘solution space’ but and increasing 
inability to find a suitable solution. In other words, 
if the number of degrees of freedom in relation to 
new solutions is larger than the complexity of the 
problem itself, the payback will rapidly decay as 
opposite to the conventional Taylorist situation. 
This, in turn, is an example of under-complexity, in 
which the ‘solution space’ of the organization is 
too small for the complexity of the outside world. 
Here, there is a low connectivity factor, combined 
with a high concentration factor. 
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Fig. 2. Connectivity and concentration in economic 
networks 

2.2 Example 

Let us consider a social network structure of 
10 entities, say employees in a business organiz-
ation.

Amorphous Industrial

NetworkedAdhocracy/chaos

 

Fig. 3. Example of an economic network structure 
(employees in an organization) 

In this figure, four possible characteristics of 
relations between these 10 entities are indicated. 
These links could be expressions of co-operation 
and/or communication between employees. For 
simplicity reasons we assume a digital situation: 
links exist or don't exist, they are bi-directional and 
they are uni-dimensional. All co-operation and 
communication below a certain threshold is sup-
posed not to be existent, and consequently the 
links drawn in figure indicate strong co-operation 
and/or communication. 

In the left-hand example, no links exist, and as 
no links exist between the entities there cannot be 
a common objective, or meaningful identity, asso-
ciated with such organization. They are merely 10 
individuals apparently arbitrarily isolated from the 
universe and put together on this paper. This way 
of arranging entities we would not call organiz-
ation, but a complete absence of any form of or-
ganization. 

In the second example in the figure one of the 
entities is connected to most other entities. Appar-
ently this one entity is in the center of what the 
structure is intended for, and is apparently the 
beginning and the end of all activities undertaken 
by the structure. We will readily recognize the ex-
istence of hierarchy in this structure, as the central 
entity apparently is necessarily governing the 
behaviour of the other entities. 

In the third example all entities are connected 
to all other entities. In this situation where appar-
ently all entities interact with the same intensity 
with all other entities, there is no structure visible. 
Structure which would indicate a way in which 
these entities relate to each other in any peculiar 
way, and which could provide a clue with respect 
to the purpose, learning and working of the 
organization. In fact if all relations are equal, then 
apparently all entities are universal or completely 
identical and if this is the case, it is difficult to see 
why they would need to relate to each other, other 
than exploiting each other's capacity in response 
to some outside force. 
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In the fourth example the connectivity is sub-
stantially higher than in the hierarchical structure 
but substantially less than in the third example. 
Here a rich pattern of connections exists, suggest-
ing some sort of meaning of relations between the 
various entities of the organization. And this mean-
ing will most likely reflect the purpose of the organ-
izational structure as a whole, as well as the differ-
ences in identity and capabilities of the individual 
entities. 

3. APPROACHES TO NETWORK CHARAC-
TERIZATION 

Different approaches may be taken to 
characterize networks. We will discuss the two 
that are helpful to the reasoning in the next 
paragraphs: traditional network analysis and the 
entropy measure. This can be applied to organiz-
ational structures by analyzing the structure of the 
distribution of links between organizational 
entities. Different configurations yield different 
levels of concentration and connectivity, and dif-
ferent levels of organizational entropy (an expres-
sion of order / disorder). 

3.1 Traditional network analysis 

Network analysis offers a means for bridging 
the gap between macro- and micro-level 
explanations of social structures. Research design 
for network analysis consists of four elements [1]: 

− The choice of sampling units, i.e. the actual 
network and the nodes that will be studied. 
The delimitation of network boundaries de-
pends to a great extent upon a researcher’s 
purposes. In our case, the sampling units 
consist of economic networks, e.g., business 
organizations, supply chains, or markets. 

− The form of relations, referring to a) the 
intensity or strength of the relation between 
two agents, and b) the level of joint involve-
ment in the same activities. For simplicity we 
assume relation to be digital: they either exist, 
or they don’t, there are no ‘levels’. 

− The relational content, e.g. transaction 
relations, communication relations, sentiment 
relations, authority / power relations. Here also 
for simplicity we assume relations to be one-
dimensional. 

− The level of data analysis. Four conceptually 
distinct levels of analysis can be distinguished: 
1) the egocentric network, or the relations of a 
single agent within the network (generating n 
units of analysis at sample size n); 2) the level 
of dyadic relationships, i.e. formed by a pair of 

nodes (generating (n2-n)/2 units of analysis at 
sample size n); 3) the level of triad relation-
ships, i.e. formed by three nodes and their 
linkages (generating n/3 distinct triads at 
sample size n); 4) the complete network, using 
complete information of relations among all 
agents. In this paper, we study economic net-
works at the fourth level, searching for the 
characteristics of the network as a whole. 

We are fully aware that the result of our 
choices in the elements mentioned above con-
stitutes a very basic approach to network charac-
terization. Hereby we largely ignore a broad spec-
trum of network theory in sociology and econ-
omics. Our approach connects however to the 
more ‘mathematical’ literature that tries to apply 
quantitative measures of network structures. 

The standard traditional measures are the 
ones we started with in the previous paragraph: 
connectivity and concentration, where connectivity 
is: 
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Concentration is a bit more complicated [1]. 
For even a simple measure, it is first necessary to 
have the relative centrality per agent or node in 
the network. For calculating this relative centrality 
we need gij, which is the number of geodesics 
linking i and j, and gimj, which is the number of 
geodesics linking i and j that involve point m: 
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Subsequently we calculate the sum of the 
difference between the centrality of the most cen-
tral actor C(p*) and the centrality of all other actors 
C(pi): 
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3.2 Organizational entropy 

Measuring entropy is a simple and elegant 
way to characterize order or disorder in systems. 
We can use this measure as a way of 
characterizing the magnitude and nature of order 
in organization structures. Especially where elec-
tronic means of communication make it fairly easy 
to measure existence and density of communic-
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ation between various players, it is also a measure 
that can rather easily be implemented. 

Organizational entropy can be defined as: 

ε = - Σ [Pi  *  log Pi]   (i = 1→m) 

where Pn is the probability that a certain state 
will occur, in our case: the probability that a certain 
interaction link (above the threshold) will exist. 

If we consider the four cases in the example 
from paragraph 2, as a maximum N*(N-1)/2 = 45 
links can exist (if we take every link as a two-way 
interaction). Using the formula we can now calcul-
ate the organizational entropy of the various ex-
amples: 

− In the first example (unconnected nodes): 

ε = -10 * (0 * log 0) = 0 

− In the second example (hierarchical structure), 
9 links exist: 

ε = -10 * (9/45 * log9/45) = 1.40 

− In the third example (fully connected), 45 links 
exist: 

ε = -10 * (45/45 * log 45/45) = 0 

− In the fourth example (networked structure), 
20 links exist: 

ε = -10 * (20/45 * log 20/45) = 1,57 

The situation in which no links exist and the 
situation in which all links exist span the extremes, 
and have no practical meaning in organizational 
terms. Of the other two examples, the hierarchical 
structure has the lowest organizational entropy, 
and hence represents a higher level of order than 
the networked structure example from figure 3. 

We can see that networked structures as 
shown above, in terms of organizational entropy, 
are neatly positioned between structured order 
and total chaos. Hence networked organizations 
require a connectivity that is substantially higher 
than the procedural hierarchical organization, with-
out ending into the other extreme where every-
thing is connected to everything. 

4. NETWORK MORPHOLOGY AND THE    
ENTROPY MEASURE 

We have seen in paragraph 2 that connectivity 
and concentration determine network morphology. 
In paragraph 3 we showed that networks might be 
characterized by their morphology and their order / 
disorder. In this paragraph we connect the network 
morphology with network order. 

In order to establish this relation between con-
nectivity (characterized by a connectivity index 

Icn), concentration (characterized by the concen-
tration index Icc) and network entropy ε, let us 
consider a network with n nodes (n>1), of which N 
nodes are fully connected to the other nodes 
(N<n) with a total number of connections in the 
network K (it follows that K ≥ N*(n-1)). 

We define: 

− The concentration index Icc as N/n, 

− The connectivity index Icn as K/n2, 

− Entropy ε as - Σ [Pij  *  log Pij], with i = 1→m, 
and j = 1→m, in which Pij is the chance of the 
existence of connection i→j. 

Hence, entropy ε is - Σ [Pij  *  log Pij] for the 
fully connected nodes plus - Σ [Pij  *  log Pij] for the 
not fully connected nodes, or ε = εN + εn. 

For the N fully connected nodes it goes: 

− Pij for the fully connected nodes is 1 (because 
for these nodes all connections exist), 

− Therefore εN = - N * [1 * log 1] = 0 (or, the 
contribution of the fully connected nodes to 
entropy is 0), 

For the n-N not fully connected nodes it goes: 

− The number of remaining connections in the 
network is K – [N*(n-1)], 

− Since the total possible number of 
connections in the network is n*(n-1), and 
since N*(n-1) connections are used up by the 
fully connected nodes, the total possible 
number of remaining connections is (n*(n-1) - 
N*(n-1)) or (n-N)*(n-1), 

− Pij for the not fully connected nodes is [(K-
N*(n-1))/((n-N)*(n-N-1))], 

− Therefore εn = - (n-N) * {[(K-N*(n-1))/((n-N)*(n-
N-1))] * log [(K-N*(n-1))/((n-N)*(n-N-1))]}. 

 

It follows that: 

− The total network entropy ε = εN + εn = 0 - (n-
N)* {[(K-N*(n-1))/((n-N)*(n-N-1))]*log [(K-N*(n-
1))/((n-N)*(n-N-1))]}. 

Let us consider an example of a network of 
1000 nodes (n = 1000) and a total number of 
500.000 connections (K = 500.000). The 
connectivity for this network Icn = 500.000/ (1000)2 
= 0,5. For various levels of the concentration index 
Icc the entropy is displayed graphically in figure 4 
(note that in this case the maximum value for Icc is 
0,5 as at this level all network connections are 
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used up by the fully connected nodes (N)). 
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Fig. 4. Entropy versus concentration 

Analogously, we can explore the relation 
between entropy and connectivity. In this case we 
fix Icc = N/n = 0,3. Hence N = 0,3 * 1000 = 300. 
For various Icn this yields values of K based on 
the formula Icn = K/n2. This is displayed 
graphically in figure 5. 

0

20

40

60

80

100

120

0,00 0,20 0,40 0,60 0,80

Icn

En
tr

op
y

 

Fig. 5. Entropy versus connectivity 

If the two parameters concentration (Icc) and 
connectivity (Icn) are combined, this yields figure 
6. Note that in the bottom left area of figure 6 Pij < 
0, which is of course impossible. This is the area 
in which K is to small to cover all the connections 
necessary for N, let alone to leave free connec-
tions between the other n-N nodes. 

Figure 6 demonstrates the strong increase of 
entropy if the relation between connectivity and 
concentration in a networked structure gets lost 
during transformation from a hierarchical structure 
to a networked structure. This phenomenon can 
be easily observed if, in a meeting between people 
with no historical relation, the chairman is 
suddenly removed. It takes quite a lot of time 
before some form of order is restored and one or a 

small number of people take the (informal) lead. 
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Fig. 6. Entropy as a function of concentration and 
connectivity 

5. MORPHOLOGY, ENTROPY AND STAB-
ILITY 

So far we have been concerned with a 
networked structure as a static configuration of 
nodes and links. However, if the networked 
structure is to be considered as a dynamic 
structure, reflecting some purpose to be fulfilled in 
relation to its relevant environment the morphology 
of connections between the nodes should be 
considered as a reflection of this purpose. This 
implies that they change over time in response to 
changing external requirements and the internal 
conditions to satisfy those. In this process positive 
feedback as well as negative feedback 
mechanisms are to be expected. The strength and 
balance between the two dependent on the actual 
level of connectivity and concentration in the 
network. Bureaucratic (high concentration/low 
connectivity) systems mainly yield negative 
feedback (steering the network to its intended 
behavior), fully connected networks (high 
connectivity, low concentration) will yield largely 
positive feedback as the change energy freely 
flows through the system. 

Probably the simplest system that incorpor-
ates positive and negative feedback together a 
duplication function is May’s [2] ‘rabbit’ formula 
(see figure 7), one that is widely quoted: 

Xt+1 = Xt * λ * (1-Xt) 0<X<1 

In this formula X changes dependent on the 
reproduction parameter λ, and counteracted by 

some force depicted as 1-X. It is the illustration of 
the evolution of an imaginary rabbit population 

May tried to predict the final size of this population, 
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without limitations for size of population or time.  
 

λ  

Fig. 7. May's rabbit population 

This approach conceptualizes the network as 
a dynamic system, with the λ parameter as 
determinant of network complexity. The interesting 
question is whether these two concepts can be 
combined. In other words, is there a relation be-
tween the entropy parameter (with the under-lying 
connectivity and concentration parameters) and 
the reproduction parameter as in May’s [2] for-
mula? 

In order to explore this let us imagine a 
networked system with say 20 nodes. And let us 
assume that those nodes are all linked to each 
other one by one, so the connections form a circle 
connecting all nodes.  Now let’s us assume that on 
t=1 one of the nodes becomes  ‘infected’ by a con-
dition that can be transmitted over the connec-
tions. At t=2, the adjacent nodes to the original 
ones will be infected. At t=3 the two sub-sequent 
nodes will be infected, and so on until all nodes 
are infected. The sequence of the number of in-
fected nodes will look like: 

1 – 3 – 5 – 7 – 9 –11 –13 –15- 17 – 19 – (20)  

Alternatively, let us assume that all nodes are 
connected to each other through a central node 
(star configuration) and lets assume that on t=1 
one becomes infected. If this infected node is the 
central one, at t=2 the whole population is in-
fected. If the infected node is not the central node, 
at t=2 the central node will be infected, and at t=3 
all remaining nodes will be infected. 

The propagation of infections (e.g., the repro-
duction factor) of the network is heavily dependent 
on the morphology of the network. In the above 
example the connectivity-index is the same in both 
networks, whereas the concentration index is very 
high in the latter network while very low in the 
circular configuration. 

It is easy to see that dependent on concen-
tration and connectivity of the network (and hence 
the entropy measure) the λ parameter will vary as 
well. Yet deriving a general mathematical ex-
pression to express λ in terms of Icn and Icc, or, 
even better in entropy ε, proves to be a lot harder. 
Here it is sufficient to demonstrate the existence of 

the connection between the morphology para-
meters and the reproduction parameter. 

6. CONCLUSIONS, IMPLICATIONS, AND 
FURTHER RESEARCH 

From the above we may conclude that: 

− It is possible to mathematically connect en-
tropy (and hence network order / disorder) 
with the traditional network measures of con-
nectivity and concentration (morphology), 

− It seems in principle possible to connect net-
work complexity (in terms of the λ reproduc-
tion parameter in the May formula) to network 
order/disorder (entropy). 

There are some important implications to be 
derived from the above. The first is that manage-
ment of organizational connectivity and concen-
tration is crucial in keeping the network within a 
bandwidth between inflexible structured order and 
total chaos. The second is that if we assume the 
link between dynamic complexity (λ) and static 
entropy to be general, then there must be a direct 
connection between the connectivity and concen-
tration of economic systems as e.g. stock markets 
and money markets, and the (in)stability which in 
practice can be observed in the behavior of such 
systems. Then, the sudden disruptions in ex-
change rates and stock prices might not (only) 
relate to changes in the underlying value creation 
mechanisms, but can (also) be considered as the 
‘spontaneous’ property of the system itself. And 
hence, governance measures are conceivable at 
the level of the system, its connectivity and con-
centration, rather than interventions in the nodes 
(actors) themselves. 

Further research should focus on establishing 
the formal mathematical connection between con-
nectivity, concentration and entropy on the one 
hand and complexity (e.g., λ) on the other. While 
for a number of idealized cases (like pure hier-
archical, pure circular and for a random distribu-
tion of connections over nodes) this is easily done, 
the current research challenge is to resolve the 
general case. 
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